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The interaction of shocks with multimaterial interfaces can occur in several applications, including high-speed
flows with droplets, bubbles, and particles and hypervelocity impact and penetration. To simulate such complicated
interfacial dynamics problems, a fixed Cartesian grid approach in conjunction with level-set interface tracking is
attractive. In this regard, the ghost fluid method has been widely used to capture the interface dynamics. However,
ghost fluid method experiences difficulties, particularly when strong shocks impinge on the interface. It has been
shown that an accurate representation and decomposition of the wave systems (by solving a Riemann problem at the
interface) significantly alleviates the shortcomings confronted by the ghost fluid method. Variants of the ghost fluid
method proposed in the past differed in the way in which this Riemann problem was invoked at the interface. In this
work, a simple, robust, and multidimensional procedure to construct the Riemann problem at the interface is
presented. The work focuses primarily on resolving interface dynamics due to strong shocks interacting with
embedded fluid—fluid interfaces (gas—gas and gas-liquid interfaces) in compressible flows. Several one- and two-
dimensional problems involving moderate-to-very-large deformation of the embedded interface have been
computed. The numerical examples demonstrate the flexibility, stability, and versatility of the approach in
successfully resolving the embedded material interface.

1. Introduction

HE interaction of shocks with multimaterial interfaces is
important in several applications, including high-speed flows
with droplets [1], bubbles, and particles [2,3]; hypervelocity impact
and penetration [4]; and detonation diffraction [5,6]. In such
problems, simulations encounter challenges associated with the
treatment of material interfaces, particularly when shocks and
detonation waves impinge upon them. The result of such shock—
interface interactions may be partial reflection, refraction, or trans-
mission of the shocks and motion of the material interfaces under
the influence of the shocked fields [7]. These motions can be large
and may also lead to topological changes such as shattering,
reconnection, collapse, etc. Accurate treatment and representation of
these phenomena is the subject of the present paper.
High-resolution and higher-order schemes such as essentially
nonoscillatory (ENO) [8] and weighted essentially nonoscillatory [9]
perform very well for single-fluid media with discontinuities [10].
However, when such schemes are employed directly to solve
multicomponent flows, undesirable oscillations in the form of
pressure waves are prevalent near the material interface [11]. The
difficulty resides in maintaining pressure equilibrium between the
fluid components at the material interface, which results in com-
putational inaccuracies and spurious oscillations [12]. Disconti-
nuities such as shocks are nonlinear phenomena with converging
characteristics and so the numerical errors generated are confined
within the (smeared) discontinuity [13]. On the other hand, for
contact discontinuities, the characteristics run parallel to each other
and hence there is no steepening mechanism to counter the numerical
dissipation of the errors generated near the discontinuity [14]. Thus,
errors in treating the presence of embedded interfaces can permeate
the solution away from the interface. To prevent these spurious
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oscillations when dealing with material discontinuities, care must be
exercised when treating the embedded interfaces in a sharp manner.

Several methods have been proposed in the past to treat the
presence of material interface in multicomponent flows [11,12,15—
17]. These methods are based on the fact that a strictly conservative
scheme will not be able to maintain pressure equilibrium across the
material interface [16]. Abgrall et al. [15,16] solved a separate
nonconservative transport equation to update the specific function
(T(y)=1/(y—1)) for the mixture. Karni [12] used a non-
conservative pressure evolution equation to compute the pressure
near the material interface. Jenny et al. [17] proposed a thermo-
dynamically consistent correction algorithm for the total energy. All
of these methods fall under the category of front-capturing methods.
A good review of such methods is given by Abgrall and Karni [16].
Although these methods are at least quasi-conservative, smearing
of the interface is an inherent feature. Treating materials that are
separated by distinct sharp interfaces (as in droplet/bubble dynamics)
by reformulating the problem using a mixture model (with diffuse
interfaces), and therefore as a single-component inhomogeneous
medium, casts the onus on the continuum formulation while
relieving the numerical techniques. However, treatment of interfaces
as nonsharp or diffuse zones within a mixture formulation is not
devoid of numerical problems. For example, across the interface of
multiphase compressible flow (say, containing gas—liquid interfaces)
there are jumps in material properties. There are also sharp changes in
material behavior and constitutive laws: for example, in the equation
of the state. When a shock is transmitted across an interface, failure to
capture this discontinuous response of the contiguous materials
results in severe numerical instabilities or unphysical flowfields. For
example, if the interface is not treated as a sharp entity, due to the
presence of numerical diffusion at the interface, a nonphysical zone
with an artificially diffused density field will result [18]. In such
situations, it becomes necessary to use an ad hoc equation of state
(representing some nonphysical averaged material) to obtain a
continuous pressure field [19]. This results in inaccurate wave
interactions and boundary conditions corresponding to this non-
physical zone being enforced at the interface [20]. Nevertheless, it is
important to point out that despite these shortcomings, in some
instances (like the shattering of droplets/bubble under the impact of
strong shocks [21,22]), the diffuse interface approach may still be the
most judicious choice.
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Alternatively, front-tracking methods that preserve interfaces as
sharp discontinuities retain the two fluid regions as separate entities
but must contend with the numerical challenges of discretizing
the governing equations to apply relevant boundary conditions on
the interface. In recent times, the use of sharp interface methods for
the representation of solid and fluid boundaries in incompressible
[23-26] and compressible [4,20,27-30] flows has become popular.
These methods are particularly attractive for the treatment of
moving boundaries in the flow domain since grid generation and
management are dispensed with. In this regard, the ghost fluid
method (GFM) originally formulated by Fedkiw et al. [28] provides a
simple framework to implicitly transmit the presence of an interface
to the flowfield. The GFM requires the definition of a band of ghost
fluid points corresponding to each phase of the interacting media.
The band of ghost fluid points (when populated with suitable flow
properties) together with its respective real fluid constitutes, in effect,
a single flowfield. Thus, discretization schemes with uniform order
of accuracy can be applied throughout the computational domain
without requiring any special treatment near the interface. Hence, the
implementation of the numerical scheme and the interface treatment
are decoupled, and the onus is shifted to populating the ghost points
with the appropriate flow properties.

GFM has been widely used to treat the presence of embedded
fluid—fluid and solid—fluid interfaces [4,20,27-31]. However, these
variants in GFM differ in the way in which the ghost points are
populated. Fekdiw et al. [32] used GFM in the context of shock and
detonation tracking. The Rankine—-Hugoniot (R-H) jump conditions
were solved across the discontinuity to populate the ghost points. In
subsequent work, Fedkiw [27] and Caiden et al. [33] extended the
GFM approach for coupling stiff and nonstiff fluids (gas—water
interfaces). In this case, the ghost fluid states were defined by
extrapolating the velocity at the interface in the water medium and the
pressure from the air medium [27]. This approach, although
attractive for gas—water interfaces, was not suitable to represent gas—
gas interfaces. Aslam [34,35] proposed to construct a Riemann
problem across discontinuities (shocks and contacts) and populate
the ghost points by solving a Riemann problem normal to the
interface. Liu et al. [20], clearly demonstrating the failure of the
original GFM, proposed the modified GFM (MGFM). Attributing
the failure of original GFM to inaccurate treatment of the wave
interactions occurring at the interface, Liu et al. solved the local
Riemann problem by carrying out characteristic analysis on the
waves arriving at the interface. Later, Hu and Khoo [36] extended this
approach by solving two separate Riemann problems: one for the real
fluids and a second for the real and corresponding ghost fluid. By
enforcing the condition that the two Riemann problems work in
conjunction such that the pressure and the velocity obtained from the
real—ghost interactions correspond to the real interactions [36], they
were able to employ the isobaric fix to compute the density field for
the ghost points. This approach was called interface-interaction
GFM (IGFM). Both IGFM and MGFM were successfully applied to
solve a multitude of problems involving strong shocks interacting
with gas—gas and gas—water interfaces. Recently, Wang et al. [37]
proposed a simple Riemann-solver-based ghost point construction
procedure called the real GFM (rGFM). The rGFM was success-
fully applied to solve several one-dimensional and simple two-
dimensional problems.

In this work, a simple but efficient method to construct the
Riemann problem has been developed. The method is an extension of
the approach formulated by Aslam [34,35] and is similar to the -GFM
approach proposed by Wang et al. [37]. The method developed
provides a uniform formulation to treat both fluid—fluid and solid—
fluid interfaces. In the case of solid objects embedded in a com-
pressible flow, it is well known that numerical schemes suffer from
acute over- and underheating errors [38,39]. Several corrective
measures have been developed to suppress the growth of such errors.
A unified methodology should be able to suppress these over- and
underheating errors and also accurately capture the wave interactions
occurring at the interface. Hence, the focus of this work is on
designing a simple yet robust method that can handle strong shock
interactions with gas—gas, gas—water, and solid—fluid interfaces.

The approach adopted in this work has a multidimensional
characteristic intrinsic to the construction procedure, making it
attractive for three-dimensional applications. Briefly, a local
Riemann problem is constructed at the interface, which is then solved
using an exact Riemann solver. The resulting Riemann states
obtained from solving the Riemann problem are used to populate the
respective ghost points. In a separate work, this method is extended to
treat embedded solid objects in compressible flows and has been
shown to be effective in suppressing the over- and underheating
errors [40]. As demonstrated in Sec. LV, the results obtained from the
current simulations clearly indicate that the proposed method is
consistent in generating satisfactory solutions for several complex
configurations and shocks interacting with interfaces; shocks inter-
acting with droplets, bubbles, and free surface have been com-
puted. The method is currently being applied to study the dynamics
of dense particulate compressible flows.

II. Governing Equations

The governing equations comprise a set of hyperbolic con-
servation laws. In Cartesian coordinates, the governing equations
in two-dimensions take the following form:
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Here,E = e + % (u? + v?) is the total internal energy and e is specific
internal energy. For two-dimensional problems of interest, the switch
function &, is set to 0. For axisymmetric problems, the switch
function ®, is set to 1. Closure for the above set of governing
equations is obtained by using a stiffened equation of state [41,42]:

P=pe(y—1)—yPy )

where y is the specific heat ratio (also called a Griineisen exponent
[1] for stiff fluids) and P, is a material-dependent constant [19]. For
the case of ideal gas we have y = ¢,,/c, and P, = 0. For stiff fluids
like water, the Griineisen exponent and the material-dependent
constant take the values of 5.5 and 0.613 GPa, respectively. From the
definition of sound speed, we have
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Using Eq. (2), the speed of sound then becomes
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III. Level-Set Method and Classification of Grid Points

Level sets, introduced by Osher and Sethian [43], are used to track
and represent embedded boundaries. The level-set field is advected
using the level-set advection equation [44,45]. A fourth-order ENO
scheme for spatial discretization and a fourth-order Runge—Kutta
time integration are used for solving the level-set advection equation.
For other relevant details regarding the implementation of level-set
methods the reader may refer to the original literature [43,46].
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Table 1 A compendium of past literature that has reported the use of Riemann problem-based technique to resolve
the presence of (shock/material) discontinuities in the flowfield

Reference Year

Methodology

Davis [14] 1992
approach.

Solved an approximate Riemann problem across the interface using the method of characteristics

The solution from this approximate Riemann solver was then used to construct the second-order

Godunov fluxes.
Cocchi and Saurel [18] 1997

Employed an exact Riemann solver to correct the numerical errors afflicting the interfacial points. The

interfacial points suffering from numerical diffusion were treated using a combination of the solution
obtained from the numerical
scheme and Riemann problem.

Fedkiw et al. [32] 1999

Employed Riemann solver approach in the context of tracking shock and detonation fronts.
Constructed a local Riemann problem normal to the (shock/material) discontinuity, to define the

Developed the MGFM. The MGFM solved a local Riemann problem normal to the interface to define

Extended the MGFM approach by solving two separate Riemann problems: one for the real fluids

for the real and corresponding ghost fluid.

Aslam [34,35] 2001, 2003
ghost states
in the GFM frameworks.
Liu et al. [20] 2003
the ghost states.
Hu and Khoo [36] 2004
and a second
Wang et al. [37] 2006

the ghost points.

Developed the rGFM. The rGFM also employed a Riemann problem construction procedure to populate

The grid points on the Cartesian mesh can be classified as bulk
points and interfacial points. The points that lie immediately adjacent
to the interface are tagged as interfacial points, as shown in Fig. 1. If
Oeurr®unr = 0, where the subscript curr denotes the current point and
nbr denotes the neighboring point, then the current and the
neighboring point are tagged as interfacial points. All the other points
are classified as bulk points. A band of ghost points are defined for
each phase of the interacting media, as shown in Fig. 1. The ghost
point band typically extends up to 4 max(Ax, Ay) distance from the
interface. Again, the level-set field can be used to define the band of
ghost points. The set of ghost points that are immediately adjacent to
the interface are tagged as interfacial ghost points, similar to the
regular interfacial points. Figure 1 shows the node classification for
phase 1, and a similar classification exists for phase 2.

A. Ghost Fluid Method

The ghost fluid method was first proposed by Glimm et al. [47],
later adopted by Fedkiw et al. [28], and is frequently employed to
treat compressible flow problems with embedded interfaces. The
GFM formulated by Fedkiw et al. provides a simple framework
to inject the boundary conditions for sharp representation of dis-
continuities [29]. The central idea is the definition of a band of ghost
points corresponding to each phase of the interacting materials. The
ghost points can be defined based on the sign of the level-set field.
Thus, effective communication with the flow solver can be achieved
by suitably populating these ghost points with flow properties such
that the real fluid together with the corresponding ghost field depict
the interface properties and conditions precisely. For more details on
the construction procedure and on the basic ideas of the ghost fluid

Phase 1
o o o o o o o0 o ol
o o o ° ° ° ° ° ° Bulk Points
o o: o (-] () o o (] (] /Interfacial Points
o o O ° © | o o o o] Interfacial Ghost
° ° ° ° Points
o o o Interior Ghost
Points
(] <] o
° o Bulk Points
o o
Phase 2
(<] (o]
(<} O,

Fig. 1 Classification of grid points as bulk points, interfacial ghost
points, and interior ghost points.

method, the reader may refer to the original paper by Fedkiw et al.
[28].

Fedkiw et al. [28] populated the ghost points based on the fact that
the pressure and velocity are continuous across the contact
discontinuity. This enables the pressure and velocity to be directly
copied from the real fluid onto the ghost field. Since the entropy
advects with material velocity (corresponding to the characteristic
wave traveling with fluid/particle velocity), there is no entropy
exchange between the two fluids. This allows the entropy to be
extended to the ghost points (a procedure called isobaric fix by
Fedkiw et al. [28]), which can then be used to compute the density for
the ghost points. This simple approach was found to be robust for
weak shocks interacting with the interface. However, when the shock
strength and the material stiffness of the interacting fluids were
increased considerably, it was found that this method failed to
maintain a nonoscillatory pressure field. Liu et al. [20] pointed out the
inability of the original GFM to accurately resolve the wave
interactions at the interface. According to them, GFM essentially
solves two separate single medium Riemann problems (real-ghost
interaction Riemann problem) across the interface. The resolution of
the waves from the real-ghost interaction does not always concur
with the Riemann states generated from real fluid interactions [20].
Hence, with strong shocks impinging on interfaces with high
impedance mismatch, this discrepancy in wave representation results
in inaccurate shock and interface locations that result in unphysical
oscillations in the flowfield [20].

B. Riemann Problem at the Interface

Carefully developed interface treatments can avoid the short-
comings of the original GFM by decomposing the singularities in the
flowfield and material properties [20]. Interfacial states satisfying
such conditions can be obtained by solving the R-H jump conditions
at the material interface. The solution for the R-H jump conditions are
obtained by constructing and solving a local Riemann problem
normal to the interface. Table 1 provides a compendium of past
literature in which the Riemann problem-based approach has been
employed (both in the GFM and non-GFM framework) to resolve the
presence of (shock/material) discontinuities in the flowfield.

The methods discussed in Table 1 differed in the way in which the
Riemann problem was incorporated and solved at the interface.
Along the same lines, the methodology developed in this work
focuses on designing a simple yet robust method for constructing the
Riemann problem normal to the interface. The method has multi-
dimensional characteristics built in the construction procedure and is
easy to implement. The method is an extension of Aslam [34,35]
and has been shown here to successfully simulate strong shocks
interacting with both gas—gas and gas—water interfaces. As will be
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Fig. 2 Illustrations of a) procedure to construct the Riemann problem at the interface and b) typical wave structure for the Riemann problem.

shown in Sec. IV.A.1, the approach adopted in this work has been
shown to minimize and confine the associated conservation errors
near the interface. In a separate work [40], this method has been
shown to mitigate over- and underheating errors effectively and also
to work consistently for a wide range of problems involving strong
and weak shock interactions with embedded solid boundaries.

C. Constructing the Local Riemann Problem at the Interface

The aforementioned (GFM and non-GFM) sharp interface
methods require the construction of a local Riemann problem normal
to the interface. In this section, a simple method is presented to
accomplish this task. From each interfacial point, such as point P in
Fig. 2a, a probe is inserted in the normal direction to the interface.
The coordinates of the point of intersection of the probe (from point
P) and the interface (i.e., point IP on the interface in Fig. 2a), can be
determined as follows:

Xp=Xpt|¢p|Np &)

The left and the right states required for assembling the Riemann
problem are obtained by advancing a distance of 1.5 Ax on either side
of the interface from IP. The length of the probe (1.5 Ax) is chosen so
that the interfacial point P, for which the Riemann problem is being
constructed, bears no or minimal weight in the interpolation
procedure involved in defining the Riemann problem. This enables
the Riemann problem to be constructed with points that are not
infused with the errors generated at the interface. To maintain
consistency, the point that lies inside the level set is always denoted as
the left state and the point that lies outside the level set is always
denoted as the right state. Thus, the coordinates of the points
corresponding to the left and right states can be computed as follows:

X, =Xp — 1.5AxN, (6)

Xz = Xp + L.5AXN, )

The flow properties W corresponding to the left X, and the right
X states can then be obtained using a simple bilinear interpolation
procedure, as shown in Fig. 2a.

1. Generalized Riemann Solver for Gas—Water Interface

For the sake of completeness, the analytical solution for the
Riemann problem is briefly described here. Once the Riemann
problem is constructed, the solution for the initial value problem can
be obtained using a suitable Riemann solver. In this case, the
Riemann problem was solved exactly. A good discussion on standard
procedures to solve the Riemann problem can be found in the book
by Toro [48]. Haller et al. [1] and Cocchi et al. [19] outlined the
procedure to solve the Riemann problem for a gas—water interface
(based on stiffened equation of state). The solution for the Riemann
problem consists of four states separated by three waves, as shown in
Fig. 2b. The nonlinear characteristic waves (with wave speeds u + a

and u — a) can be either a shock wave or a rarefaction wave. The
linear characteristic wave (which travels at the particle velocity u)
represents the interface separating the interacting materials. The
solution for the Riemann problem determines the intermediate *
states sandwiching the interface (contact discontinuity), across
which pressure and normal velocity are continuous but the density is
discontinuous. Leaving the details pertaining to the steps for
constructing the functions required to solve the Riemann problem to
Toro [48], the functions and the algebraic equation are listed next:

f(p. Wi, We) = f(p, W) + fr(p, Wg) + Au" =0 (8)

where Au" = uj + up, and where uj, are the normal velocity
— T
components, Wy z = (0. Ujg. Pir)" > and

Frr(p. Weir)
. LR YLRT! «y LR
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2. Correction Procedure

The nonlinear algebraic equation (§) can be solved via Newton
iterations to determine the intermediate states W7 .. The inter-
mediate states W}, obtained from solving the Riemann problem are
then used to correct the flow properties of the real fluid at the
interfacial points. For instance, as shown in Fig. 3b, the Riemann
state W} obtained from solving the Riemann problem constructed at
the interfacial point P is used to correct the flow properties of the real
fluid at point P. This will ensure that a constant entropy field is
maintained throughout the interacting materials (except across
shocks). This in turn prevents the diffusion of the entropy field across
the interface and hence prohibits entropy exchange between the
interacting (real) fluids. It was pointed out earlier in Sec. IIL.A that
a simple extension of the entropy field to correct the real fluid
properties at the interfacial points does not comply with the nature
of the characteristic waves arriving/leaving the interface. On the
contrary, the correction procedure enforced in the current approach
account for the wave systems interacting with the interface.

3. Populating the Ghost Points

Once the flow properties at the interfacial points are corrected, the
flow properties are extended along the normal direction to the
interface to populate the respective interior ghost points. To carry out
the multidimensional extrapolation procedure, the partial differential
equation given in Eq. (9) is solved to steady state:
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Fig. 3 One- and two-dimensional correction and extrapolation procedure.
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3_ + H(p)n - V¥ =0 9)
ot
where W is the variable extended across the interface, t is the
pseudotime, and H(¢,) is the unit Heaviside function defined as

[0 if ¢, <00,
H(q’)_{1 if ¢, >0.0

The variable ¢, used in the above equations denotes the value of the
level-set distance function for the /th embedded interface. In the
current work, the variable W extended across the interface cor-
responds to the flow properties at the intermediate state Wy,
obtained from solving the Riemann problem. As given in Eq. (9), a
constant-extrapolation method is used for populating the ghost
points, although higher-order extrapolation procedures are possible
[49]. The one-dimensional version of the correction and the
extension procedure is shown in Fig. 3a. Figure 3b shows the cor-
responding multidimensional correction and extension procedure
carried out along the normal direction to the interface. It is important
to note that the velocity obtained from the Riemann solver cor-
responds to the normal velocity component computed in the local
curvilinear coordinate. To reconstruct the velocity vector in the
global Cartesian coordinates, the slip condition at the interface is
enforced. Thus, the tangential velocities computed for the Riemann
problem (the left and the right states) are extrapolated across the
interface. Accordingly, the velocity vector can be reconstructed as

up =i+ (10)

an

where 1 is the normal vector, u"* is the normal velocity obtained
from the Riemann solver, and uj, are the tangential velocities
(corresponding to the left and right states of the Riemann problem)
computed as follows:

uy=u"n+ug

ui =u; —(u,-n)n (12)

uh=uz— (ug-n)n (13)
The velocity vector can then be decomposed into its corresponding
components (u, v, w) in the Cartesian coordinates.

D. Freshly Cleared Cells

As the interface sweeps through the computational domain, a
computational point that was previously inside the object (i.e.,
belonging to, say, phase 1) may now lie outside the object (i.e.,
belonging to phase 2) and vice versa. Identification of these points is
straightforward once the level-set field is updated. Explicitly, points
for which ¢"¢ ™! < 0 are tagged as freshly cleared cells. Although

the values with which the freshly cleared cells are populated are
temporary (as they are overwritten in the correction procedure),
depending on the location of these points, they may or may not
participate in the interpolation procedure involved in constructing the
Riemann problem. Hence, it is required to update the flow and
material properties belonging to these points at the beginning of each
time step. There are several ways to update the properties of the
freshly cleared cells. The easiest and the most direct method in the
GFM framework adopted in this work is to copy the properties of
ghost fluid variables at that point onto the real fluid properties.

IV. Numerical Examples

In this section, several numerical examples will be presented to
demonstrate the capabilities of the current approach. The Euler
equations (1) were solved using a third-order total variation
diminishing (TVD)-based Runge—Kutta scheme for time integration
and third-order convex ENO scheme [50] for spatial discretization.
Details pertaining to the implementation of the convex ENO scheme
in the current context are given by Tran and UdayKumar [4]. The
governing equations were nondimensionalized based on freestream
density p,., pressure p.,, and the sonic velocity do, = v/ Poo/ Poo-
Unless otherwise stated, the atmospheric conditions are chosen to
nondimensionalize the governing equations. A suitable length scale
is chosen depending on the dimensions of the immersed object, and
the grid spacing for one-dimensional simulations was set at Ax =
1/200 unless stated to the contrary. Numerical schlieren images
shown in this section were generated using the method outlined by
Quirk and Karni [3]. It is worth mentioning here that the term R-GFM
used in this section corresponds to Riemann—GFM and not to be
confused with the rGFM approach of Wang et al. [37].

A. One-Dimensional Example

In this section, a series of one-dimensional shock-tube (of unit
length) problems are presented. The initial condition corresponds to a
singularity in flow variables that resolves into a transmitted and a
reflected shock or expansion wave or both (depending on the
impedance mismatch between the interacting fluids) and a contact
discontinuity. The resulting contact discontinuity is tracked and
represented as a sharp interface using the GFM approach.

1.  Example 1

An example of a multimaterial shock-tube problem is the one-
dimensional air—helium shock tube with the initial conditions given
next:

(P y) = | (1:0.10,00.14) for x < 0.5
P 1Y) =1(0.125,0.1,0.0, 1.667)  for x > 0.5

The plots of density, pressure, velocity, and entropy after 100 time
steps are displayed in Fig. 4. As in the previous case, both versions of
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Fig. 4 Example 1: plots for the air-helium shock-tube problem. The inserts correspond to the zoomed-in view of the variation close to the interface.

GFM underpredict the density near the interface. The insert shows
the zoomed-in view of the density profile close to the interface. The
interface position predicted by original GFM is shifted by two/three
grid points relative to the exact solution. In contrast, the interface
location predicted by the R-GFM approach is in line with the exact
solution. The pressure and the velocity plots also show good
agreement with the exact solution. The entropy plots show modest
overheating errors at the interface.

A conservation error analysis was carried out for this problem. The
total mass, momentum, and energy conservation errors computed
using the approach outlined by Wang et al. [37] are presented in
Fig. 5. It was found that the conservation errors were noticeable only
during the initial four—five time steps, when the shock wave was in
the vicinity of the interface. This is consistent with the trend observed
by Liu et al. [20] and Hu and Khoo [36]. The conservation errors
observed in this case are mainly due to the errors that are inherent
in the GFM approach. These errors arise from the numerical flux
computed based on the ghost field. The numerical flux computed at
the interface does not ensure strict conservation. As shown in Fig. 6,
for all the bulk points, explicit numerical flux conservation can be
achieved easily. On the other hand, due to the ghost fluid treatment
from each side of the interface and the construction of fluxes using
the ghost field, it is not possible to compute a unique numerical flux
crossing the cell boundary for the interfacial points. The errors
generated due to the nonuniqueness in the numerical flux computed
at the interface becomes significant when strong shocks or detonation
waves impinge on the interface.

It was pointed out by Abgrall and Karni [16] that a nonoscillatory
pressure field can be produced by methods that are not strictly
conservative at the interface. Because of the intrinsic nature of the
ghost fluid treatment, where the ghost field is populated via extension
from the real fluid, it is not straightforward to devise a scheme in the

ghost fluid framework that would completely annihilate these con-
servation errors. However, Glimm et al. [13] attempted to construct
conservative fluxes by locally rearranging the cells cut by the
interface and explicitly enforcing appropriate jump conditions to
guarantee equality of the numerical fluxes at the cell interface. This
procedure of dynamically removing the conservation errors at the
interface is appealing and feasible for one-dimensional problems but
becomes extremely complicated when extended to multidimensional
problems. A relatively simpler approach was proposed by Nguyen
etal. [51]. In this approach, the conservation errors were alleviated by
redistributing these errors to the numerical fluxes computed at the
interface, at the end of each Runge—Kutta (RK) substep. As pointed
out by Hu and Khoo [36], it is not readily apparent that such a post-
processing measure to correct the conservation errors is effective,
particularly when conservation errors have already been incurred in
the previous RK time step. In this work, no such additional measures
were enforced to conserve the numerical fluxes at the interface.
Furthermore, the conservation error analysis carried out in this work
points out that these errors are confined to very few time steps when
the shock resides on/near the interface and were found to be benign
from the viewpoint of stable computation over the overall time of
calculation. As shown in the insert in the density plots, both the
interface and the shock locations are captured to a good degree of
accuracy, indicating that the conservation errors involved are
spatially and temporally localized (close to the interface and to the
duration of shock—interface coincidence) and do not pollute the bulk
of the solution or the long-term evolution of the flowfield.

2. Example 2

An example of a shock-tube problem with a gas—water interface is
taken from Hu et al. [36,52]. The initial conditions are modified as
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Fig. 5 Plots of conservation errors for the air-helium shock-tube problem.
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Fig. 6 Nonuniqueness in the numerical flux computed at the interface;
figure reproduced from Abgrall and Karni [16].
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(0.5,20000.0, 100.0,2.5) for x < 0.5

(0. Pu,y) = { (1.0,1.0,0.0,4.4) for x > 0.5

For the given conditions, a strong shock is both reflected and
transmitted. Figure 7 shows the plots obtained after 200 time steps.
Figure 7 shows that both the reflected and the transmitted shock
locations are captured correctly. The position of the contact
discontinuity matches very well with that of the exact solution.
These features indicate that the conservation errors generated, even
in the case of stiff fluids, are small. Because of very large entropy
disparities between the interacting media, the entropy plots do not
reveal any significant over- and underpredictions of the flow
properties.

3. Example 3

The next example considered is a water—air shock-tube problem.
The water medium is on the high-pressure side and the air is
maintained at ambient condition. The initial conditions normalized
with respect to the ambient conditions of water are given next:

in the air medium. Figure 8 shows the plots obtained after 200 time
iterations. The transmitted shock is extremely weak (the pressure
ratio across the reflected rarefaction wave is much larger than the
pressure ratio across the transmitted shock wave) and hence not
readily visible from the density or pressure plots (Figs. 8a and 8b).
However, the entropy plots shown in Fig. 8d show the jump across
the transmitted shock in air. Also revealed by the entropy plots are the
overheating errors. Although the overheating errors observed in this
case are relatively large in magnitude, they are not significant
enough to afflict the global solution. The computed position of the
transmitted shock wave and the reflected expansion wave match well
with the exact solution.

It is clear from the examples shown above that the R-GFM
approach developed in this work is able to accurately resolve strong
shock interactions with both gas—gas as well as gas—water interfaces.
The methodology developed in this work is found to be robust and
accurate in resolving multimaterial interfaces without requiring
special treatments at the interface. The plots shown in Fig. 5 clearly
indicate the conservation errors and the resulting under and over-
heating errors incurred are localized close to the interface.

B. Two-Dimensional Examples
1. Spherical Riemann problem

First in the multidimensional test cases presented in this work is
the single-phase spherical Riemann problem. The initial conditions
for this problem are given next:
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Fig. 9 Initial configuration for single-phase spherical Riemann
problem.

(o, P,u,v,y)

_ {(1.0, 5.0,0.0,0.0,1.4) for /x> + (y—0.5)% < 0.2

" 1(1.0,1.0,0.0,0.0,1.4) otherwise

The one-dimensional problem in spherical coordinates is
reconstructed in cylindrical coordinates (axisymmetric form), as
shown in Fig. 9. Euler equations in axisymmetric form were solved
in a 1.5 x 1.2 domain with 600 x 450 points. The simulations were
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carried out both with (R-GFM) and without explicit interface
treatment (i.e., using ENO shock-capturing) for the contact
discontinuity. The simulations were carried out until 7' = 0.8 units.
The initial condition corresponds to a jump in pressure in the radial
direction. This results in an inward-moving expansion wave, an
outward-moving shock wave, and a contact discontinuity. Figure 10
shows that the R-GFM is able to resolve the contact discontinuity
accurately without modifying the overall wave structures and their
relative positions. The solution obtained from the R-GFM closely
follows the trend observed by the shock-capturing schemes with no
explicit interface treatment. Moreover, the enforcement of the sharp
interface treatment accentuates weak features that are lost in the
single-field simulation. As pointed out by Langseth and Leveque
[54], the nonphysical zone developed due to wave focusing is visible
at the center in both solutions. For a quantitative comparison, the
variation of density and pressure along the centerline (at y = 0.6) at
t = 0.5 are shown in Fig. 11. The plots are in close agreement with
each other.

2. Shock Interacting with Cylindrical Helium Bubble in Air

a Case A: Mach 1.22 Shock Interacting with Helium Bubble in
Air. The interaction of shock waves with gas bubbles has
applications ranging from astrophysics [55,56] to cavitation damage
of human tissue (shock wave lithotripsy) [57]. The example

¢) t=0.8, R-GFM

Fig. 10 Snapshots of numerical schlieren image obtained with (left) and without (right) GFM treatment for the initially spherical contact discontinuity

corresponding to time.

d) t=0.8, shock-capturing scheme (without GFM)
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Fig. 11 Comparison of a) density and b) pressure variation for spherical Riemann problem aty = 0.6 at¢ = 0.5.
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Fig. 12 Snapshots of numerical schlieren image (left) and the corresponding density contours (right) at different instants in time for a Mach 1.22 shock

impinging on a cylindrical He bubble.

considered in this section corresponds to the interaction of a
Mach 1.22 shock with a cylindrical helium bubble in air. The
configuration of this multicomponent system provides a weak shock
interacting with fluids of varied stiffness. Haas and Sturtevant [58]
considered shock waves interacting with R-22 refrigerant and helium
bubbles. They provided a series of experimental observations that
were later verified numerically by Quirk and Karni [3] and several
by Fedkiw et al. [28]. The initial conditions normalized based on the
property of air at 1 atm and a length scale of 1 mm are

(0,P,u,v,y)

(1.3764,1.5698,—0.394,0.0,1.4) for postshocked air, x > 225
={(1.0,1.0,0.0,0.0,1.4) for preshocked air

(0.138,1.0,0.0,0.0,1.667) for /(x—150)% +y2 <25

The top and bottom of the domain are prescribed with reflective
boundary conditions. The right end of the domain is prescribed with
a Dirichlet inflow condition corresponding to postshocked air and
the left end with Neumann outflow condition. The grid spacing
Ax =0.25.

As the speed of sound in helium is faster than in the surrounding
air, the system can be classified as a slow-fast interface [60]. Hence,
the impinging shock results in a refracted shock wave and a reflected
rarefaction wave. As mentioned in Johnsen et al. [11], the refracted
shock, upon reaching the other end of the bubble, further degenerates
into a weaker reflected shock wave and a transmitted shock in air.
This process of reflection continues until the resulting wave system
degenerates into a weaker wave system [11]. The numerical schlieren
image and density contours generated from the current simulation are
shown in Fig. 12. Figures 12a and 12b show the transmitted shock

wave and the reflected expansion. It is clear from the figure that the
refracted shock inside the helium bubble travels faster than the
incident shock. Figures 12c and 12d show the transmitted wave
from the helium bubble and the incident shock in air. The multiply
reflected weak wave system inside the helium bubble is also clearly
visible. A closer examination of the figure depicts the initial stage
of jet formation at the center of the bubble. The jet becomes more
clearly visible in Figs. 12e and 12f. The bubble has now taken the
familiar kidney bean shape. Not so readily visible features in
Figs. 12e and 12f are the Kelvin—Helmbholtz instability [22] reported
on the surface of the bubble. These features may become evident with
increase in mesh resolution. Finally, in Figs. 12g and 12h, the bubble
is shattered into fragments due to the impact of the jet. It is worth
noting that the giant vortical structures reported by Marquina et al.
[22] are not readily visible in the current simulation. The reason is
that Marquina et al. used an extremely fine mesh (8000 x 600) and a
front-capturing technique that adds sufficient amount of numerical
diffusion at the interface to capture these vortical structures and the
associated Kelvin—Helmholtz instability.

b. Case B: Mach 6 Shock Interacting with Helium Bubble in
Air. In this example, the Mach number of the impinging shock
wave is increased to M = 6. The configuration of the system,
including the domain boundary conditions and the grid resolution,
are the same as in the previous case. The initial conditions are
modified as

(0, P,u,v,y)

(5.268,41.83,—5.752,0.0,1.4) for postshocked air, x > 225
={(1.0,1.0,0.0,0.0,1.4) for preshocked air

. ,1.0,0.0,0.0,1.667 or v/ (x— +y <
(0.138,1.0,0.0,0.0,1.667) f (x—150)>+y?> <25
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Fig. 13 Snapshots of numerical schlieren image for a Mach 6 shock
interaction with a cylindrical He bubble at different instants in time.

Bagabir and Drikakis [59] analyzed the response of a gas bubble
to shocks of different strengths. In their work, the computations
were carried out for a single-component flow (with y = 1.4) system.
Hu et al. [52] carried out the corresponding multicomponent flow
simulation with a helium bubble and air. The snapshots of the
numerical schlieren image from the current simulations are displayed
in Fig. 13. Since the refracted shock wave travels faster inside the
bubble, it reaches the rear end of the bubble before the incident shock
wave. The shock wave is then transmitted to the air medium, which is
at rest. In the previous case, this transmitted shock wave coalesces
with the incident shock wave to form a single planar shock wave
that travels in the air medium. In this case, because of the time lag
developed due to greater celerity of shock wave inside the bubble, the
incident shock wave cannot coalesce with the transmitted shock
wave, leaving behind a curved shock front from the transmitted
shock attached to the planar incident shock wave. The strength of
the incident shock is high enough to impart sufficient momentum to
the helium bubble to drag the bubble along with it. As a result of this,
the location of the shock and the interface are always in close
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Fig. 14 Topology of the interface (zero level-set field) at different
instants in time.
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Fig. 15 Initial configuration for high-speed droplet impacting a flat
substrate.

proximity to each other. Moreover, the resultant changes on the
topology of the interface are so intricate that the bubble shatters into
tiny fragments due to the impact of the jet. The topology of the
interface at different instants in time are displayed in Fig. 14. At time
t = 15.3 us, the transmitted shock deforms the front portion of the
bubble, leaving the leeward side unaffected. At # = 38.25 us, the
shock has traversed most part of the bubble, and at time r = 61.2 us,
the bubble starts to deform. At t = 78 us, the bubble has deformed
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Fig. 16 Snapshots of numerical schlieren image illustrating the wave
patterns generated from the impact of a high velocity droplet on a flat
substrate at different instants in time.
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completely and starts to form fragments. Once such fragments are
formed, it is not possible to continue the simulation without
employing special mesh enrichment techniques. Hu et al. [52] carried
out their simulation by explicitly deleting small pockets of mass.
No such additional measures were taken in this work; given the
limitations of a uniform nonadaptive mesh, the results obtained are in
close agreement with that of Hu et al. In an ongoing effort, local mesh
refinement [61] technique is being employed to resolve the interface
topology more accurately, and the results of this work will be
reported in the future.

3. High-Speed Impact of a Liquid Droplet

In this example, high-speed impact of a liquid droplet over a flat
substrate is considered. Impact of high-speed droplets and the
resultant wave mechanisms are important in thermal spray and
coating technologies [1,62]. A 200-pum-diam liquid droplet is
injected with a high velocity of 500 m/s toward a rigid flat substrate
located at the bottom. The initial conditions normalized with respect
to the properties of surrounding air are given next:

OO 1 2 3 4 5
X
a) Numerical schlieren image at 1=0.01
6
5

0 1 2 3 4 5
X

¢) Numerical schlieren image at /=0.0197

(0. P,u,v.y)
{ (1000.0,1.0,0.0,—1.571,5.5) for the liquid droplet,

(1.0,1.0,0.0,—1.571,1.4) for the surrounding air

Figure 15 shows the geometrical setup for this problem. The left
boundary is prescribed with a symmetry condition and the bottom
boundary is prescribed with a reflective wall boundary condition.
The top and the right boundaries are prescribed with a Neumann
condition. Euler equations in the axisymmetric form are solved.
Haller et al. [1,63-65] provided a detailed survey of this problem.
They provided theoretical predictions for the jetting time that
matched well with their corresponding numerical model. However, it
is not clear from their analysis how the surrounding air was modeled.
In this example, the flow inside the droplet as well as in the
surrounding air is considered; that is, both the droplet and the
surrounding air are injected with the same velocity toward the wall.
The snapshots of the numerical schlieren image from the current
simulation are shown in Fig. 16. The figures indicate that most of the

b) Pressure contours at =0.01

6

d) Pressure contours at 1=0.0197

Fig. 17 Snapshots of numerical schlieren image (left) and corresponding pressure contours (right) at different instants in time.
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key features such as lateral jetting of the liquid droplet along the
contact edge, the shock wave traveling in the droplet and in the
surrounding air, the reflected rarefaction wave, and focusing of the
rarefaction wave at the top end of the droplet are captured well. It is
worth mentioning that the fine-mesh calculations shown in this
example were carried out with roughly one million points (935,000
grid points), which is one-half of the number of mesh points used by
Haller et al. (two million grid points), who used a front-tracking
solution procedure (FronTier) due to Glimm et al. [66,67].

4.  Shock Loading on a Submerged Structure Due to an Underwater
Explosion

The next problem considered in this section is the evolution of an
underwater explosion and its impact on a submerged structure. A
square structure submerged in water is impacted by a circular shock
wave generated by an explosion. The shock wave imparts severe
loading on the structure that could potentially damage the structure.
This is a multimaterial flow problem consisting of multiple
interfaces: air—water, gas—water, and solid—water interface. For the
fluid—fluid interfaces, the methodology discussed in the previous
sections was adopted to define the ghost states. For the solid—fluid
interface, the reflective boundary condition (RBC) augmented with a
Riemann solver was used to construct the ghost field. This problem is
discussed at length by Liu et al. [68]. The explosive core of 0.1 m
radius is located at (1.5, 2.0) in a 6 x 6 m domain. The free surface
separating water from air is located at ¥ = 5.0. The square structure
with length = 1.0 m is located at the center of the domain. The
flow conditions normalized with properties of water at ambient
conditions are

(1270.0,9000.74, 0.0, 0.0, 1.4)

(p, P,u,v,7) =1 (1.0,1.0,0.0,0.0,5.5)

(0.001,1.0,0.0,0.0, 1.4)

The bottom of the domain is prescribed with reflective boundary
condition and the top, right, and left boundaries are prescribed with
Neumann conditions. The explosion sets off a circular shock wave
that interacts with the structure and later with the free surface. The
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incident shock impacts first on the bottom and the left face of the
square structure, resulting in a complex shock diffraction pattern, as
shown in Fig. 17. Figures 17a and 17b show the shock diffracting off
the structure along with the vortices produced at the top left and the
bottom right corner. At this stage, the shock has not impacted the
free surface. The inward-traveling expansion wave and the contact
discontinuity separating the explosive core from water are also
clearly visible. The shock wave reflected off the bottom wall of
the domain can be seen advancing toward the explosive core.
Figures 17c and 17d show the plots at a later instant in time. The
shock wave has impacted the free surface and the reflected expansion
wave traveling in the water medium and the transmitted shock wave
in air are clearly visible. The reflected shock wave from the bottom
wall of the domain has now reached the explosive core, deforming its
shape.

The net horizontal and vertical force components were computed
by integrating the pressure force acting on the structure. The force
components exerted on the square structure are plotted are shown in
Fig. 18. The horizontal and the vertical force components have the
same form and they overlap with each other until # = 0.017. This is
expected because the wave structure resulting from the initial shock
impact (on the bottom and the left wall) is symmetric with respect to
the structure. Later in time, the vertical force is considerably modified
due to the strong reflected rarefaction wave from the free surface and
hence begins to depart from the horizontal component. The moment
exerted on the structure due to these forces was also computed
and plotted in Fig. 18. For a quantitative comparison, the force
components computed from the current simulation are compared
with those obtained by Liu et al.[68]. Liu et al. used MGFM to

for the core, /(x — 1.5)2 + (y — 2.0)2 < 0.1
for quiescent water,y < 5.0
for ambient air,y > 5.0

resolve the fluid—fluid interface and symmetry-based RBC
(developed by Forrer and Jeltsch [69]) for the solid—fluid interface.
As shown in Fig. 19, the results from the present simulation compare
very well with those of Liu et al. [68].
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Plots of a) nondimensionalized force components and b) moment exerted on the submerged square structure.
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Fig. 19 Comparison of nondimensionalized a) horizontal and b) vertical force components exerted on the submerged square structure with that of Liu

et al. [68].

V. Conclusions

The interaction of strong shock waves with embedded fluid—fluid
interfaces in compressible flows was studied. The interface is
retained as a sharp entity by virtue of the ghost fluid method (GFM).
It was shown earlier that solving a local Riemann problem at the
interface alleviated the pitfalls encountered by the original GFM
approach. Hence, in this work, a simple procedure to incorporate the
Riemann problem at the interface was developed. The method was
found to be robust in handling shocks of varied magnitude interacting
with both gas—gas and gas-liquid interfaces. The (mass, momentum,
and energy) conservation error analysis carried out for this method
revealed that these errors are significantly attenuated and localized
close to the interface. Under- and overheating errors were mitigated
but not entirely eliminated by the present approach. This is due to
the intrinsic nonconservative nature of the ghost fluid approach in
treating sharp interfaces. The proposed method was shown to
generate satisfactory solutions for several complex configurations
and shocks interacting with single and multiple interface(s); shocks
interacting with droplets, bubbles, and free surface have been
computed. The method is currently being applied to study the
dynamics of dense particulate compressible flows.
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